Analysis on the Dropout Effect in Convolutional Neural Networks
نویسندگان
چکیده
Regularizing neural networks is an important task to reduce overfitting. Dropout [1] has been a widely-used regularization trick for neural networks. In convolutional neural networks (CNNs), dropout is usually applied to the fully connected layers. Meanwhile, the regularization effect of dropout in the convolutional layers has not been thoroughly analyzed in the literature. In this paper, we analyze the effect of dropout in the convolutional layers, which is indeed proved as a powerful generalization method. We observed that dropout in CNNs regularizes the networks by adding noise to the output feature maps of each layer, yielding robustness to variations of images. Based on this observation, we propose a stochastic dropout whose drop ratio varies for each iteration. Furthermore, we propose a new regularization method which is inspired by behaviors of image filters. Rather than randomly drop the activation, we selectively drop the activations which have high values across the feature map or across the channels. Experimental results validate the regularization performance of selective max-drop and stochastic dropout is competitive to the dropout or spatial dropout [2].
منابع مشابه
Towards dropout training for convolutional neural networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملMax-Pooling Dropout for Regularization of Convolutional Neural Networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advoc...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کامل